Math Formula for Trigonometry
Math Formulas for Trigonometry
Trigonometry is a branch of mathematics that studies the relationships between the sides and angles of triangles. It's essential for many fields, including physics, engineering, and astronomy. Below are some fundamental trigonometric formulas and their examples.
1. Basic Trigonometric Ratios
The three primary trigonometric ratios are sine (sin), cosine (cos), and tangent (tan). They are defined as follows for a right triangle:
- Sine (sin):
sin θ = opposite / hypotenuse - Cosine (cos):
cos θ = adjacent / hypotenuse - Tangent (tan):
tan θ = opposite / adjacent
Example:
For a right triangle with an angle θ = 30°, opposite side = 1, and hypotenuse = 2:
sin 30° = 1 / 2 = 0.5cos 30° = √3 / 2 ≈ 0.866tan 30° = 1 / √3 ≈ 0.577
2. Reciprocal Trigonometric Ratios
- Cosecant (csc):
csc θ = 1 / sin θ - Secant (sec):
sec θ = 1 / cos θ - Cotangent (cot):
cot θ = 1 / tan θ
Example:
For θ = 30°:
csc 30° = 1 / sin 30° = 2sec 30° = 1 / cos 30° ≈ 1.155cot 30° = 1 / tan 30° ≈ 1.732
3. Pythagorean Identities
sin² θ + cos² θ = 11 + tan² θ = sec² θ1 + cot² θ = csc² θ
Example:
For θ = 45°:
sin² 45° + cos² 45° = (√2 / 2)² + (√2 / 2)² = 1/2 + 1/2 = 1
4. Angle Sum and Difference Identities
sin (A + B) = sin A cos B + cos A sin Bsin (A - B) = sin A cos B - cos A sin Bcos (A + B) = cos A cos B - sin A sin Bcos (A - B) = cos A cos B + sin A sin Btan (A + B) = (tan A + tan B) / (1 - tan A tan B)tan (A - B) = (tan A - tan B) / (1 + tan A tan B)
Example:
For A = 30° and B = 45°:
sin (30° + 45°) = sin 75° = sin 30° cos 45° + cos 30° sin 45° = 0.5 × √2 / 2 + √3 / 2 × √2 / 2 = √2 / 4 + √6 / 4 = (√2 + √6) / 4
5. Double Angle Identities
sin 2A = 2 sin A cos Acos 2A = cos² A - sin² Acos 2A = 2 cos² A - 1cos 2A = 1 - 2 sin² Atan 2A = 2 tan A / (1 - tan² A)
Example:
For A = 30°:
sin 2(30°) = sin 60° = 2 sin 30° cos 30° = 2 × 0.5 × √3 / 2 = √3 / 2cos 2(30°) = cos 60° = 2 cos² 30° - 1 = 2 × (√3 / 2)² - 1 = 2 × 3/4 - 1 = 3/2 - 1 = 0.5
6. Half Angle Identities
sin (A/2) = ±√((1 - cos A) / 2)cos (A/2) = ±√((1 + cos A) / 2)tan (A/2) = ±√((1 - cos A) / (1 + cos A))tan (A/2) = sin A / (1 + cos A)tan (A/2) = (1 - cos A) / sin A
Example:
For A = 60°:
sin (60° / 2) = sin 30° = √((1 - cos 60°) / 2) = √((1 - 0.5) / 2) = √(0.5 / 2) = √0.25 = 0.5cos (60° / 2) = cos 30° = √((1 + cos 60°) / 2) = √((1 + 0.5) / 2) = √(1.5 / 2) = √0.75 = √3 / 2
These formulas are the foundation of trigonometry and are used extensively in various applications. Understanding and mastering these will provide a solid base for further studies in mathematics and related fields.

Post a Comment for "Math Formula for Trigonometry"