Skip to content Skip to sidebar Skip to footer

Math Formula for Trigonometry

Math Formula for Trigonometry - Formula Quest


Math Formulas for Trigonometry

Trigonometry is a branch of mathematics that studies the relationships between the sides and angles of triangles. It's essential for many fields, including physics, engineering, and astronomy. Below are some fundamental trigonometric formulas and their examples.

1. Basic Trigonometric Ratios

The three primary trigonometric ratios are sine (sin), cosine (cos), and tangent (tan). They are defined as follows for a right triangle:

  • Sine (sin): sin θ = opposite / hypotenuse
  • Cosine (cos): cos θ = adjacent / hypotenuse
  • Tangent (tan): tan θ = opposite / adjacent

Example:
For a right triangle with an angle θ = 30°, opposite side = 1, and hypotenuse = 2:

  • sin 30° = 1 / 2 = 0.5
  • cos 30° = √3 / 2 ≈ 0.866
  • tan 30° = 1 / √3 ≈ 0.577

2. Reciprocal Trigonometric Ratios

  • Cosecant (csc): csc θ = 1 / sin θ
  • Secant (sec): sec θ = 1 / cos θ
  • Cotangent (cot): cot θ = 1 / tan θ

Example:
For θ = 30°:

  • csc 30° = 1 / sin 30° = 2
  • sec 30° = 1 / cos 30° ≈ 1.155
  • cot 30° = 1 / tan 30° ≈ 1.732

3. Pythagorean Identities

  • sin² θ + cos² θ = 1
  • 1 + tan² θ = sec² θ
  • 1 + cot² θ = csc² θ

Example:
For θ = 45°:

  • sin² 45° + cos² 45° = (√2 / 2)² + (√2 / 2)² = 1/2 + 1/2 = 1

4. Angle Sum and Difference Identities

  • sin (A + B) = sin A cos B + cos A sin B
  • sin (A - B) = sin A cos B - cos A sin B
  • cos (A + B) = cos A cos B - sin A sin B
  • cos (A - B) = cos A cos B + sin A sin B
  • tan (A + B) = (tan A + tan B) / (1 - tan A tan B)
  • tan (A - B) = (tan A - tan B) / (1 + tan A tan B)

Example:
For A = 30° and B = 45°:

  • sin (30° + 45°) = sin 75° = sin 30° cos 45° + cos 30° sin 45° = 0.5 × √2 / 2 + √3 / 2 × √2 / 2 = √2 / 4 + √6 / 4 = (√2 + √6) / 4

5. Double Angle Identities

  • sin 2A = 2 sin A cos A
  • cos 2A = cos² A - sin² A
  • cos 2A = 2 cos² A - 1
  • cos 2A = 1 - 2 sin² A
  • tan 2A = 2 tan A / (1 - tan² A)

Example:
For A = 30°:

  • sin 2(30°) = sin 60° = 2 sin 30° cos 30° = 2 × 0.5 × √3 / 2 = √3 / 2
  • cos 2(30°) = cos 60° = 2 cos² 30° - 1 = 2 × (√3 / 2)² - 1 = 2 × 3/4 - 1 = 3/2 - 1 = 0.5

6. Half Angle Identities

  • sin (A/2) = ±√((1 - cos A) / 2)
  • cos (A/2) = ±√((1 + cos A) / 2)
  • tan (A/2) = ±√((1 - cos A) / (1 + cos A))
  • tan (A/2) = sin A / (1 + cos A)
  • tan (A/2) = (1 - cos A) / sin A

Example:
For A = 60°:

  • sin (60° / 2) = sin 30° = √((1 - cos 60°) / 2) = √((1 - 0.5) / 2) = √(0.5 / 2) = √0.25 = 0.5
  • cos (60° / 2) = cos 30° = √((1 + cos 60°) / 2) = √((1 + 0.5) / 2) = √(1.5 / 2) = √0.75 = √3 / 2

These formulas are the foundation of trigonometry and are used extensively in various applications. Understanding and mastering these will provide a solid base for further studies in mathematics and related fields.

Post a Comment for "Math Formula for Trigonometry"